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ABSTRACT: This work presents scattering functions of conjugates
consisting of a colloid particle and a self-avoiding polymer chain as a
model for protein−polymer conjugates and nanoparticle−polymer con-
jugates in solution. The model is directly derived from the two-point
correlation function with the inclusion of excluded volume effects. The
dependence of the calculated scattering function on the geometric shape of
the colloid and polymer stiffness is investigated. The model is able to
describe the experimental scattering signature of the solutions of suspending
hard particle−polymer conjugates and provide additional conformational
information. This model explicitly elucidates the link between the global
conformation of a conjugate and the microstructure of its constituent
components.

In recent years there has been much interest in developing
multicomponent building blocks, such as colloid−polymer

conjugates, to create programmed, novel functional materials
that are thermodynamically favorable on both micro- and
mesoscopic length scales.1−5 The synthesis of these heteroge-
neous building blocks opens up unique opportunities to create
new material combinations that hold promise for improving the
performance and range of functionality accessible with self-
organized materials.6−11 For example, enzymes and globular
proteins have catalytic properties and biological specificity that
exceed those of synthetic materials. Incorporation of these
proteins into protein−polymer conjugates has attracted
significant interest to improve the pharmacokinetics of
biological drugs, to produce biofunctional particles for targeted
delivery of therapeutics,12 and to self-assemble biofunctional
nanomaterials such as catalysts.13 Additionally, there has been
significant interest in fullerene-polymer, polyhedral oligomeric
silsesquioxane (POSS)-polymer, and nanoparticle−polymer
conjugates for applications, such as molecular electronics,
biosensors, and energy storage.14,15

To predict and control the self-assembly of these various
colloid−polymer amphiphiles, it is important to understand the
molecular configuration of individual molecules comprising the
conjugate molecule. To this end, small angle scattering
techniques16 have been commonly used to investigate the
conformation and positioning of a single colloid−polymer
conjugate in these composites.17−30 Various models of
scattering functions have been proposed to extract quantitative
structural characteristics from experiment. A composite power
law approach has been used to separately obtain the qualitative
structural features of colloid−polymer conjugates at different
length scales reflected by the characteristic variations of

scattering intensities at corresponding Q regimes.19,20 Global
scattering functions which provide unified conformational
descriptions have also been proposed. A core−shell model
was used to describe the scattering behavior of the systems in
which the polymer chains as well as the associated solvent are
treated as a homogeneous outer layer.21,22 This simple model is
unable to describe the scattering features originating from the
microscopic structure. Alternatively, a mesoscopic approach
which treats the polymer in the conjugates as an ideal Gaussian
chain has been proposed.23,24 However, in this model excluded
volume effects within the polymer chain are not incorporated,
and the correlation between a polymer chain and the colloid is
calculated based on a phenomenological coarse-grain assump-
tion that the polymer follows Gaussian statistics, with its center
of mass located at a certain distance from the colloid.
Therefore, it is expected that this model is unable to address
the conformational features quantitatively for systems under
good solvent conditions.31 In this letter a small angle scattering
function of a colloid−polymer conjugate with explicit
incorporation of excluded volume effects is derived. This
model is able to describe the experimental scattering features of
colloid−polymer conjugates under good solvent conditions.
The conformation of a colloid−polymer conjugate can be

expressed using the two-point spatial correlation function, often
called the form factor
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where the brackets ⟨ ⟩ represent the average over all the
molecular configurations and angular distribution of Q⃗, and ri⃗
and rj⃗ represent the positions of two scattering points.16 For a
colloid−polymer conjugate the positions ri⃗ and rj⃗ in eq 1 run
through the whole system. Based on the physical locations of ri⃗
and rj⃗, Pconjugate(Q) can be further expressed as
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In eq 2, Pcolloid(Q), Ppolymer(Q), and Pcolloid−polymer(Q)
represent the scattering contributions respectively from the
intracolloid correlation, the intrapolymer correlation, and the
colloid−polymer cross correlations, respectively. ρi,j gives the
scattering length density (SLD) at position ri⃗,j in the colloid
particle, and bi,j is the total bound coherent scattering length of
a Kuhn segment with its center at position ri⃗,j in the polymer
chain.
The contributions from the first and second terms of eq 2

can be written as
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where ρi,j and bi,j reduce to ρ and b, respectively, with the
assumption that the colloid and polymer are both homoge-
neous. Here V denotes the volume of a colloid particle, L the
contour length of the polymer chain, aK the Kuhn segment
length, and RCS the radius of the cross section of Kuhn
segments. The prefactors (ρV)2 and (bL/aK)

2 give the
scattering ability of the colloid and polymer on an absolute
intensity scale. Pnorm,colloid(Q) represents the normalized form
factor for the colloid. Various mathematical forms have been
derived for particles with different geometric shapes.16 In
colloid−polymer conjugates with a single polymer tether, the
grafting density is low, and assuming that the polymer chain
does not exhibit strong attractive or repulsive interactions with
the colloid, the form factor of the polymer can be represented
by PWLC(Q,L,aK,RCS), which represents the scattering function
for a worm-like chain (WLC) with excluded volume effects
whose phenomenological expressions have been identified
previously.32,33 The third term on the right-hand side of eq 2
represents the cross correlation between the colloid and
polymer. It can be further expressed as
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where r′⃗ is the relative difference vector between the positions ri⃗
and rj⃗. It breaks into the sum of t ⃗ and r,⃗ where t ⃗ is the relative
vector from a point on the polymer to the geometric center of
the colloid, and r ⃗ is the relative coordinate within the colloid
particle, as shown in Figure 1. Since the conjugate is not

centrosymmetric, the integration over t ⃗ has to be done
numerically over all the Kuhn segments. A factor of 2 is
assigned to take into account the fact that the two sampling
points can be located at the polymer or the colloid with the
same possibility. The volume integral

∫⃗ = ⃗ − ⃗ · ⃗F Q d r iQ r( ) exp( )
V

colloid
3

(6)

gives the Q-dependent scattering amplitude of the colloid
particle. ri⃗ represents the center of a Kuhn segment which runs
through the whole contour length L. Note that ri⃗ is a discrete
vector and eq 5 starting from the second equivalent sign is
discretely summed over δ(ri⃗) and is not a path integration. The
relative vector t ⃗ can be calculated based on the end-to-end

Figure 1. Schematic representation of a conjugate with a
homogeneous spherical colloid (volume V, centered at C) and a
wormlike chain (contour length L) attached to its surface at point B. A
partial chain with n monomers follows the end-to-end distance
distribution function p(n,r). The red dashed lines indicate the
azimuthal angle θ of the end of the partial chain to the axis defined
by the attachment point and the center of the colloid. The colloid-
chain cross term in the two-point correlation function (vector ri and rj)
can be calculated numerically via the integral over n and θ.
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distance distribution function p(n,r) for a partial chain of n
Kuhn segments at a radial distance r and a selected azimuthal
angle θ. For an ideal Gaussian chain, p(n,r) follows the
Gaussian distribution. As a result, the scattering function takes
the form of the Debye function.34 Since the excluded volume
effect is not incorporated, it is known that the Debye function
underestimates the spatial correlation, especially at the high Q
regime relevant to the intrachain correlation.31 In our study, the
mathematical expression of p(n,r) proposed by des Cloizeaux is
chosen because of its numerical accuracy as demonstrated by
computer simulation with the inclusion of the intrachain
excluded volume effect.35,36 Here, p(n,r) is an isotropic
distribution, but in the conjugates, the colloid excludes the
possibility of the polymer located within the scope of its
volume. Considering this effect, the cross correlation between
the polymer and colloid is evaluated numerically. However, the
excluded volume effect caused by the colloid will also affect
p(n,r), the distribution of the polymer, which may be
complicated but will not generate a qualitative difference. For
the sake of simplicity, we assume that the mathematical form of
p(n,r) is the same as in the case of free chains but with part of
the distribution excluded due to the volume of the colloid.
For a spherical colloid, the scattering amplitude takes the

following expression
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where R is the sphere radius and V the volume (V = (4π/3)R3).
Since Fsphere(Q) is an angle-independent real number, eq 5 can
be further simplified to
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where ((sin(Qt))/Qt) results from the angular average of the
kernel function exp(−iQ⃗·t)⃗. The last equivalence expression is
the transformation from a discrete spatial distribution of ri⃗ to a
continuous representation using spherical coordinates. In eq 8,
the integral is explicitly expressed using the end-to-end distance
distribution function p(n,r).35 The integration is performed
numerically using the trapezoidal method in MATLAB.37

In Figure 2 we present the form factor P(Q) calculated from
eqs 2−8 for the hard sphere−polymer conjugates. The
conformational parameters R, L, aK, and RCS used in the
calculation are 20, 2667, 10, and 2 Å, respectively, values
representative of a globular protein conjugated to a long
polymer chain with a similar total scattering power. The SLDs
of the sphere and polymer are both chosen to be 2.52 × 10−6

Å−2, the same as the SLD of lysozyme, so that the total
scattering length of the sphere and polymer are equal. The
number density of the colloid−polymer conjugate is assigned to
be 4.29 × 1017 cm−3, which corresponds to 1% (w/v) aqueous
solution of lysozyme. Therefore, the calculated scattering
profile can be presented in the unit for absolute intensity in

Figures 2−5. The cross contribution between the colloid and
the polymer is negative at some Q values because of the phase

interference in the spatial correlation. Therefore, for the sake of
clarity, the P(Q)s are shown on a linear scale for the y-axis.
Since the total scattering lengths of the colloid and the polymer
are the same, the total scattering intensities and the zero-angle
intensities of the intracolloid (dashed line) and intrachain
(dotted line) correlations are identical. Since the polymer chain
is more loosely packed than the colloid, it spreads over a larger
spatial distance, and its Guinier region is located at lower Q.16

In the intermediate Q region (Q = 0.05−0.2 Å−1), the
scattering function is dominated by the contribution from the
colloid particle. On the other hand, in the high Q region (Q > 1
Å−1), P(Q) is dominated by the intrapolymer correlation due to
its slower decay. It should be noted that the summation of the
three terms in eq 2 gives the extra concave shape of P(Q) close
to the position where the cross correlation and the intracolloid
correlation are equal, for example, Q = 0.02−0.05 Å−1 in Figure

Figure 2. P(Q) of a sphere−polymer conjugate calculated following
eqs 2−8 and shown on a linear scale. The solid line is the total
scattering of P(Q), including the contributions from the intrapolymer
correlation (dotted), the intracolloid correlation (dashed) and the
cross correlation between the colloid and polymer (dash-dotted). The
inset shows the total P(Q) plotted on a logarithmic scale.

Figure 3. P(Q)s of (a) sphere-polymer, (b) ellipsoid-polymer and (c)
cylinder-polymer conjugates, with intracolloid (dashed), intrapolymer
(dotted), cross (dash-dotted), and total (solid) correlations shown
separately. The comparison of the total P(Q)s for these three cases is
presented in panel (d) on a logarithmic scale.
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2. This is a specific feature of the scattering profile for colloid−
polymer conjugates that cannot be described using the previous
approaches.17−30

It is important to highlight additional insightful information
provided by our calculation. For example, existing scattering
spectra of colloid−polymer conjugates,26−30 with similar
conformational parameters used in the calculations presented
in Figure 2, are seen to be characterized by an upturn in the Q
range of 0.01−0.05 Å−1. As demonstrated by eq 5, because of
the scattering contribution from the colloid−polymer, the cross
correlation is twice that of the intracolloid and intrachain
correlations; therefore, the zero-angle intensity of the entire
system is dominated by its contribution (dash-dotted line). Our
calculations show that the experimentally observed upturn
could result from the intraconjugate cross correlation between
the colloid and the polymer instead of the formation of
interconjugate aggregates or other large length scale heteroge-
neous structures.
The calculation of colloid−polymer conjugate form factors

can be further extended to investigate colloids with different
geometric shapes such as ellipsoids and cylinders, correspond-
ing to various shapes of proteins or peptides in bioconjugate
materials. The scattering functions of conjugates consisting of a
sphere, ellipsoid, or cylinder with a polymer are calculated via
eqs 2−6. The results are given in panels (a), (b), and (c) of

Figure 3, respectively. Their schematic representations are
given in the inset of each panel, and the comparison of their
total scattering functions is given in panel (d). The parameters
used in the calculations are a sphere of radius 20 Å, an ellipsoid
with a long axis of 40 Å and short axes of 14.14 Å, a cylinder of
radius 11 Å and length 88 Å, and the parameters for the
polymer are the same as in Figure 2. The volume and total
scattering length for the three different colloids are identical.
From sphere to ellipsoid to cylinder, the colloid is elongated in
the radial direction and contracted in the axial direction,
causing the Guinier region of the scattering profile due to the
colloid (dashed curve in panels (a)−(c)) to extend toward
lower values of Q, and the same trend is observed in the total
scattering profile of the conjugates, clearly shown in panel (d).
Consequently, the concave region in the total P(Q) near Q =
0.03 Å−1 becomes progressively more pronounced upon
increasing the aspect ratio. The oscillation in the calculated
total P(Q) of a conjugate also exhibits a strong dependence on
the geometric shape of its constituent colloid. For example, due
to the large aspect ratio of the cylinder, two sets of oscillations
at Q = 0.006−0.1 Å−1 and 0.5−2 Å−1 originating from the
correlation along the axial and radial directions, respectively, are
observed in our calculations given in panels (c) and (d).
Many different chemical and physical stimuli can modulate

the conformation of polymer chains; therefore, it is important
to understand the dependence of the scattering function on the
stiffness of the polymer chain. For a flexible polymer chain, the
ratio N = L/aK characterizes the stiffness of the polymer chain.
A polymer with a larger value of N is characterized by more
flexible conformations.34 From panel (a) to (c) of Figure 4, the
Kuhn length decreases from aK = R/2 to aK = R/32, which
reflects a deteriorating solvent condition. The intrapolymer
correlation shifts toward high Q due to a smaller Kuhn length
and the contraction of the global size of the polymer. As a
result, the aforementioned concave region in the P(Q) curve
becomes less discernible. In the high Q range (Q > 0.2 Å−1) the
intrapolymer scattering contribution (dotted line in panels
(a)−(c)) weighs more in the total P(Q), and the oscillations
from the intracolloid correlation are progressively masked by
the intrapolymer correlation (panel (d)). As demonstrated in
panel (d), P(Q) decays faster in the Porod region (Q > 0.8 Å−1)
with a smaller aK due to the more compact polymer
conformation. Meanwhile, the first minimum of the oscillations
(Q = 0.15−1 Å−1) is seen to shift toward low Q, indicating the
size of the colloid increases due to the collapsed polymer
attached onto its surface.
An important question regarding the conformation of

colloid−polymer conjugates is whether the polymer chain
wraps around the colloid to create a shield (shroud model) or
exists as a relatively unperturbed flexible chain attached to the
colloid (dumbbell model). In the former scenario, the polymer
may enshroud the protein due to the presence of strong
enthalpic interactions between colloid and polymer or in
conjugates where the polymer size substantially exceeds that of
the colloid; in the latter case, if there are weak interactions
between a colloid and polymer of similar size, it is more
favorable for the polymer to adopt a coil configuration
extended away from the colloid due to the large entropic
penalty of wrapping around the colloid.17 In the extreme case of
a shroud model, one can assume that the polymer chain fully
collapses on the surface of the colloid, which gives a sphere
twice the volume of the spherical colloid in the conjugate. The
form factor of this shroud limit is shown in Figure 5 as the

Figure 4. P(Q) of a sphere-polymer conjugate calculated as a function
of the Kuhn length aK. The contour length L is fixed at 2667 Å and the
sphere radius at 20 Å. The Kuhn lengths are (a) aK = 10, (b) 2.5, and
(c) 0.625 Å, and their P(Q)s are compared in panel (d).

Figure 5. P(Q)s of the dumbbell (solid) and shroud models (dashed)
of a sphere−polymer conjugate, shown on a (a) logarithmic (a) and a
(b) linear scale. In the shroud model, the polymer is assumed to be
fully wrapped around the spherical colloid.
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dashed line and compared to the sphere-polymer conjugate
form factor as the solid line, where the colloid and polymer are
assumed to have the same SLD in this comparison. Colloid−
polymer conjugates that adopt a shroud configuration in which
the SLDs of the colloid and polymer are different form a core−
shell structure. While the form factor of a core−shell structure
will depend upon the relative difference between the SLDs of
the component blocks and that of the solvent, the form factor
will remain qualitatively similar to that of a shroud
configuration in which the SLD is homogeneous. The SANS
instrument resolution function has been taken into account,
which has smeared the oscillations in the high Q region (Q >
0.1 Å−1), but the decay of its intensity can certainly be used to
deduce the conformational characteristics of a colloid−polymer
conjugate in solution. The shroud model decays much faster,
closer to a power law of −4, than the dumbbell model. The
concave section of P(Q) at Q = 0.03 Å−1, originating from the
cross correlation, is another feature which can be used for
characterization of the conjugate conformation.
It is instructive to briefly discuss the influence of

polydispersity, which is caused by the size distribution of the
constituent polymer or colloid, on the calculated scattering
functions. Using a sphere−polymer conjugate as an example,
this effect can be incorporated through the following
equations:38

∫= −P Q f R L P Q R L a R R L( ) ( , ) ( , , , , )d dsphere polymer K CS

(9)

where f(R,L) is the probability density function for the
distribution of R and L under the constraint of the following
normalization criterion:

∫ =f R L R L( , )d d 1
(10)

The polydispersity of the colloid−polymer conjugates will
smear some of the features in the scattering profiles such as the
minima and maxima, which is similar to the effect of
polydispersity on the scattering of spherical colloids.
To summarize, we present a theoretical model for the

scattering function of colloid−polymer conjugates. This model
is directly derived from the two-point spatial correlation
function with the incorporation of the excluded volume effect
with valid approximations. The scattering functions calculated
from this model, in the future, will be used to analyze the
experimentally observed scattering features of the colloid−
polymer conjugates and provide additional insightful inter-
pretations that are not intuitively obvious. This model facilitates
the quantitative conformational investigation of colloid−
polymer conjugates using scattering.
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